Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Incubator Q&A

Welcome to the staging ground for new communities! Each proposal has a description in the "Descriptions" category and a body of questions and answers in "Incubator Q&A". You can ask questions (and get answers, we hope!) right away, and start new proposals.

Are you here to participate in a specific proposal? Click on the proposal tag (with the dark outline) to see only posts about that proposal and not all of the others that are in progress. Tags are at the bottom of each post.

Comments on What is the definition of ‘decidability’?

Post

What is the definition of ‘decidability’? Question

+2
−1

In order to understand Gödel’s theorems, one must first explain the key concepts essential to it, such as “formal system”, “consistency”, and “completeness”. Roughly, a formal system is a system of axioms equipped with rules of inference, which allow one to generate new theorems. The set of axioms is required to be finite or at least decidable, i.e., there must be an algorithm (an effective method) which enables one to mechanically decide whether a given statement is an axiom or not. If this condition is satisfied, the theory is called “recursively axiomatizable”, or, simply, “axiomatizable”. The rules of inference (of a formal system) are also effective operations, such that it can always be mechanically decided whether one has a legitimate application of a rule of inference at hand. Consequently, it is also possible to decide for any given finite sequence of formulas, whether it constitutes a genuine derivation, or a proof, in the system—given the axioms and the rules of inference of the system.

https://plato.stanford.edu/Entries/goedel-incompleteness/

I believe this quality is called ‘decidability’. How is this property expressed formally, in logical notation?

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

Maths (2 comments)
Maths
Michael‭ wrote 9 months ago

Is this a mathematics question?

Peter Taylor‭ wrote 9 months ago

Yes, it is, although my best guess is that there isn't a specific notation and natural language words are used instead.